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THEORY OF INDUCED SPATIAL INCOHERENCE

I. INTRODUCTION

High gain laser fusion requires a highly symmetric pellet implosion, with ablation pressure
nonuniformities of no more than a few percent around the spherical surface.’ .ZFor directly-driven pel-
lets, this symmetry must be achieved by the combination of nearly uniform laser illumination and
thermal diffusion in the ablating plasma. ‘‘5 Thermal diffusion alone is ineffective in reducing lower
spatial frequency nonuniformities to acceptable levels, especially at the short optical wavelengths
required for good laser-target coupling .4’5

Theoretical studies have shown that acceptable spherical illumination uniformity can be achieved
by overlapping a limited number (z 20) of focused beams, provided that each individual beam profile
is smooth and controllable. 6-9 Earlier efforts to obtain such profiles, however, have been frustrated
by the inherent imperfections in high-power multistage laser systems. The cumulative effect of
numerous small amplitude and phase aberrations (both linear and noniinear) introduced by each opti-
caI element of a multistage laser produces large random aberrations in the output beam, and hence
large random intensity nonuniformities at the target surface. Efforts to control laser aberrations,
using ultra high quality optics and extensive beam relaying, have not been completely successtid,
especially at high energies and shorter laser wavelengths. 10.11 Nonlinear opticaltechniques, such as

phase conjugation’2 and Rarnan beam cleanup,’3 -‘5 are effective at generating beams capable oi pro-
ducing nearly diffraction—limited focal spots. However, these techniques are not generally effective
in eliminating large residual intensity nonuniformities in the quasi near-field of the laser,’4 -‘6 where
the pellet would have to be placed in order to obtain the required spot size with a lens of reasonable
focal length.

One promising solution to the uniformity problem is the Induced Spatial Incoherence (1S1) con-
cept. ‘7-Z1 In the conventional version’’-zo of this technique, a broadband laser beam (bandwidth
Au >> 1/tPul,J is sliced into an array of small beamlets by an orthogonal pair of echelon structures,
which impose a different time delay at each step. (The idea is illustrated in two dimensions in Fig.
1.) If the delay increments & = r.., - tn are chosen somewhat longer than the optical coherence
time t= = 1/Av, the beamIets become mutually incoherent. These bearnlets are then overlapped onto
the target by a lens of focal length ~. Each of them will independently focus to the same smoothly-
varying far-field diffraction profde of total width 2f MD,, provided that the initial width D, is small

in comparison to the aberration scalelength Sti in the incident laser beam. One has the option of
either centering ail of the profiles at a single point, or (by slightly tilting adjacent echelon steps in
opposite directions) centering them equally around four nearby quadrature points in order to control
the shape and width of the composite profile. ‘8-20 (Fig. 2) If the incident beam aberration ASO con-
tains some short scalelength components (s ‘d << D,), which might for example arise from hard
apertures or damage spots, the resulting energy will tend to focus well outside the main lobe of the
far-field diffraction pattern. This component will therefore miss the target, and will be of little conse-
quence as long as it represents only a small fraction of the total energy.

Manuscript approved March 23, 1987.



Although the overlapped beamlets produce a complicated
their mutual incoherence ensures that this pattern will evolve

interference pattern at any one instant,
randomly in times of order t=. If the

target responds hydrodynamically, in times - thydro>> tc, it will effectively ignore this rapidly-

shifiing structure, and respond only to the smooth time-averaged diffraction profile. For example, an
optical bandwidth AU = 30 cm-[ (easily achieved in Nd:glass or KrF lasers) provides tc = 1 ps,
whereas time scales for gross hydrodynamic motion of a large high gain pellet shell are typically - 1
to 10 ns.

The idea of slicing the laser light into beamlets that are subsequently integrated at the target
plane also forms the basis of several other techniques for controlling irradiation profiles. In the
random-phase shift (RPS) technique developed by Kato and Mima, ‘2’Z3the beam slicing is performed
by a transparent phase mask,z4 which randomly imposes a fixed phase shift of either O or r on each of

the resulting beamlets. The RPS technique has the advantage that it does not require a broadband
laser, and the phase mask may, in some existing laser facilities, be easier to utilize than 1S1 echelons.
However, the f~ed phase relationship among the bearniets (even with broadband light) ensures that
the interference pattern will remain stationary throughout the pulse duration. The lower spatial fre-
quency components of this pattern could not only create nonuniforrnities in the ablation pressure, but

could also seed self focusing or other instabilities in the underdense plasma.

Several optical integrating techniques have been developed to produce a “flat-topped” intensity
profde at the target. This can be accomplished by an array of prisms,z5 tilted mirrors,z6Q7 or lens sys-
tems28 that combine the beamlets in their quasi-near fields. With these techniques one can avoid most
of the deleterious low spatial frequencies in the interference pattern if one also uses 10w F/number
optics (i.e., large angles between the bearnlets). Altemativel y, one can achieve full 1S1 operation by
using a broadband laser and allowing the usual delay increments between the tilted echelon steps, as
illustrated in Fig. 3. All of these quasi near-field schemes have the drawback that Fresnel diffraction
of the sharp-edged beamlets will introduce gross nonuniformities unless the Fresnel numbers are
>100. This requires very low F/number optics, which would be unsuitable for a reactor design. 8 In
principle, both Fresnel ripples and short scalelength intensity aberrations can be at least partially aver-
aged out by offsetting the beamlets from one another at the target .Zs However, it is not clear that this
averaging process could maintain adequate uniformity at the target if there were any significant
amount of aberration in the incident laser beam. The Fresnel number requirement would be less
severe if high power anodization were applied to the edges of each step; one possible technique for
achieving this is currently under development.’9 Thus, the quasi near-field version of 1S1 may become
a viable alternative that would be particularly useful for flat foil acceleration experiments. The
remaining issues would then be the limited depth of focus [approximately the spot size x (F/number)],
and the cost and complexity of the apodized steps.

This paper presents a theoretical description of the conventional (far-field) version of 1S1; “flat
topped” 1S1 will be the subject of a later paper. Section II describes the 1S1 configuration in greater
detail, and calculates the ideal profiles in the single-focus and quadrature modes described above.
Section III examines nonuniformities in the average intensity and ablation pressure due to residual
interference among the beamlets within finite averaging times. These results are generalized to a par-
tial 1S1 configuration, where bearnlets at larger crossing angles are allowed to remain mutually
coherent throughout the pulse. Because the resulting interference patlem will contain only high spa-
tial frequencies, which can presumably be smoothed out by thermal diffusion, partial 1S1 may be one
possible way to accommodate a very large number of bearnlets without significantly affecting the tem-
poral behavior of the pulse. Section IV examines the perturbing effects of laser aberration and beam-
let divergence on the 1S1 profile. Section V shows numerical simulations comparing 1S1 results (aver-
aged over times r = 100 tC) with those obtained by ordinary quasi near-field illumination and by the
RPS technique. In Sec. VI, we present some recent 2D numerical simulations indicating that 1S1
operation suppresses filarnentation in the underdense plasma: Finally, Sec. VII reviews these results,
along with those of recent target interaction experiments using 1S1, and briefly discusses a promising
new technique for implementing 1S1 without using echelons.21
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field
Consider a collimated
amplitude at point x =

c.::
: ::..::

II. 1S1 CONFIGURATION
c-$~.,,,,,
>-,

laser output beam propagating along the + 2 direction. Its instantaneous ~’
(x ,y ) within the transverse plane z = ZL can be written in the form

,-.,
,.T.,
h..,,

~1

EL (X,t) = lvl(x) F(t) e-i’”, (2.1) ‘“

where the complex amplitudes A(x) and F(t) describe the transverse spatial structure (e. g., due to
beam aberration) and the temporal dependence, respectively, and b is a constant to be specified later.
For a broadband Q-switched pulse, where AV >> 1/tPul,e, F(t) is well approximated by a quasi-

stationary stochastic variable. Its correlation function (F(t + ~) F*(r)) will exhibit a smooth, localized
~-dependence

(F(t + ;) F*(t)) = ( lF(t) 12) ~(;), (2.2a)

where 7(O) = 1 and

y(;) -O for 1~1 >tC = l/Av, (2.2b)

while the mean square amplitude ( IF (r) Iz) describes the slow temporal behavior of the average
intensity over intervals - rPul~~>> rC. For any quantity G(t) = G(F(r)), the brackets {G(r)) denote an

ensemble average, which is equivalent to the time average

(G(r)), = (“G(r’) +

over interval r in the limit where t=/ ~ - 0 and ~ << tPul,.. The effects due to averaging each
member of the ensemble over a finite number of coherence times will be considered in Sec. III.

An orthogonal pair of echelon structures, each having N~ >> 1 steps of width D,, slices the
beam into an N~ x N~ array of square beamlets. (If the incident beam is circular, then on] y 7rN~/4 of
those bearnlets will contain any appreciable energy. ) The nth beamlet, which is defined by the two-
dimensional vector n = (n., , nv) with n,, and n> ranging over 1.2,. . ,Ns, is centered at position
Xn = (Xn,yn), where

[
Xn = n,r

-+(NS++ ‘n=[’+NS+l)lD1l

(2.3)

and delayed by time t”. The total field amplitude can thus be written as the two-dimensional summa-
tion

Es (X, t) = b~ U

n [=1 ‘[+ ‘(f-fn)A(x)exp[ik8n”(x-xn)-i@(’-’n)] ‘2-4a)

‘bd=w+l ‘An+(x-xJ”(vLA)n

+ +(x - Xn)(x – Xn):(VL VIA)n]F(t - tJ exp [iki3n “(x - Xn) – i~f + ip”], (2.4b)
L

where k = 27r/A, u(x) is a “top hat” function equal to 1 for Ix I
and /3n are, respectively, the phase shifts and deflection angles
echelon steps, and ( )n means that the enclosed quantity is to be

s 1/2 but zero otherwise, Pn = ur”
imposed upon the beamlets by the
evaluated at Xn. The second order
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expansion (2 .4b) assumes that A(x) varies slowly across each beamlet,
te&s ( V LA)n and ( V ~ V LA)n describing the
we can speci~ the normalization

z
n

without any loss of generality. No attempt is

incident beam aberration.

lAn12=l

with the
For the

transverse gradient
unaberrated terms,

(2.5)

made (nor should be made) to control the optical path

delays ct. to tolerances of order L so the phase shifts Pn are assumed to be mutually independent and
randomly distributed between O and 27r. The angular deflections & are allowed up to 2N~ indepen-

dent adjustments; however, the most useful combinations appear to be either f?. = O for all n (singIe-
focus configuration) or f?n alternating among the values (P,P),(P, -6),( -6,/3),( -6, -p) for the quadra-
ture configuration.

A single lens of focal length ~ now superimposes the beamlets at a target plane located a short
distance z ( <c~) in front of the focal point. The complex amplitude at this plane is found by substi-

tuting expression (2.4b) into the diffraction integral:30

E(x,z J) =

=

x

x

‘1 [d2 x’ E~(x’,t) exp i =-i_Ll#/.l

27rf.f – z) z

k b y::y; ‘f)] ~ F(f
“[

kxn - X
- fn) exp i@’n(z) - i —

n f-z 1

{
exp -i—

f:z

where x(x,z,t) = k(f –:) -wt +

[

.
‘xn-‘-7 1 )

(f-~)1% “~+i** ,

k lxlz/2(f -z), and

(2.6a)

(2.6b)

@’n(Z) = (o. + kzlxnlz/2f (f -z)

is a random phase factor. In writing expression (2.6), we have ignored the propagation distances in
between the echelon steps and the focusing lens. This is justified as long as the target lies in the

quasi far-field of the bearnlets; i.e., Iz I must remain small in comparison to the bearnlet focal depth:

121 << 2hf2/D~ (2.7)

Expression (2.6) then takes advantage of the fact that the far-field amplitudes are independent of 1n,
except for small phase curvature terms kln Ix 12/2f 2.30 The resulting phase differences

k(ln – /n/) Ix 12/2f 2 between beamlets are negligible, so these terms can be removed from the summa-
1‘2 the I&12 term in the exponential oftions and incorporated into x(x, z, t). Because Ig I s D I/2 ,

(2.6b) can be ignored as long as condition (2.7) is satisfied. One then obtains

D ,b exp[ix (X,Z,r)]

[

kxn “X
E(x,z J) = ~ F(t - tn) exp i~’n (z) - i—

a n f-z 1



c.:

x [An+[=)(vLA)n”vL :
<-j~..
:Js.!

<.,+

H

f-z .’(v LvLA)n

H

h“.,!

x-(z/f)%-(f-z)&l

11

..,.,,

+1 :VLV1 sine 7r (2.8) ;;
2 – ik a r:;‘?

where

sin Or sin 0,
sine (t)) = — -

0,, q
(2.9)

and

a=(f ‘Z) MD, = fMD, (2. 10)

are, respectively, the functional form and effective width of the far-field diffraction pattern due to a
single unaberrated beamlet of width D 1. The condition required for negligible separation of the beam-
lets due to their angular divergence is Ix“ I Iz I /fa << 1, or in terms of the F/number f/D of the
total aperture D = NsD 1,

f/D >> z/2a. (2.11)

The largest defocusing Iz I~a. that would be required in a spherical illumination geometry would be
the pellet radius = a; hence, condition (2. 11) can be adequately satisfied by using high F/number
optics. Finally, we note that the far-field condition (2.7) can be rewritten as f/D, >> Iz \ /2u, and
hence follows immediately from (2. 11) because D/D, = N~ > 1.

Returning to Eq. (2.8), we expand the sine fimction up to second order in x“ z/f a, approximate
~ - z = ~, and fmallyspeci~ b = (87r/cD~)l’2:

H

I/2
87r

[

kxn . x
E(x,z,f) = — exp[i x(x, z, t)] ~ F(I – /n) exp ic$’”(c) -i —

ca z n f 1

x
H

A“ +
fi;(VIA)n –

fxnAnl “ ‘;+ H-

(f)2 (’. V .A)” + (7)2 X.M.

(2. 12)

Expression (2. 12) contains ail of the information needed to generate not only the ideal 1S1 profiles,
but also the deviations arising from multi-beamlet interference, aberration, and beamlet divergence
effects.

To complete this section, we evaluate the ideal 1S1 profiles for the single-focus (i.e, complete
overlap) and quadrature configurations described previously. 1S1 generally requires all of the beam-
Iets to be mutually incoherent; i.e., the correlation function defined in (2.2) must satisfy

At. - r“,) = tin.n~ (2.13)

In the scheme proposed here, this condition is achieved by choosing the incremental delays Ar to
satisfy



At > t, = l/Av (2. 14)

for all n. [A factor At /tc = 1.5 will usually be sufficient to ensure that (2. 13) is well satisfied if
AV = A@WFL14).] The ideal profiles are then found from expression (2. 12) by applying (2. 13) to the
ensemble-averaged intensity (1 (X,Z,t ) ) = (c/87)( \E (X,ZJ ) 12), and discarding the aberration and
beamlet divergence terms. For the complete overlap configuration (all & = O) one obtains

{l(o)(x,t)) = (1/a2)(Po(f)) S(7rx/a) (2. 15)

where

(P~(t))= ~(lF(t -fn)l~) IA”12 (2.16)
n

is the ensemble-average of the total power, and

S(d) = sinc2(0) =
[??12

(2.17)

is the diffraction proille of a single beamlet. Approximately 82% of the incident energy is contained
in the central lobe of S (m/a), as defined by -a s x, y

corresponds to ,i “ /3” = +/3 ( –p) for even (odd) values of n.
values of ny. This gives

(I(Q)(x,t))
[

= +X (Pi$’(t))s T-’ - flaa,TY - v6a
~.v a a 1

where da = f B is the focal spot offset, ~ and v both assume the

~’J. The quadrature-- configuration
and j o & = +/3 (-/3) for even (odd)

(2.18)

values + 1, and the quantities

(e) (e) (e) (0)

(PJ+(t)) =~~([F(t -tJ1’)[’4n l’, (PJ-(t)) = ~ ~(lF(t -tn)12)l An I’, cm. (2.19)
n n, n, n,

refer-to summations over the even (e) and odd [o) steps. The optimum value of&J /u depends on the
specific target application. For the broadest possible flat-topped profile. as shown in Fig. 2b, the
optimum choice would be ~a = 0.43a; to optimize the illumination uniformity and coupling in a
multi-beam spherical geometry, 18’19the best choice centers around ~a = ().22a.

In order to avoid significant temporal broadening effects due to the echelons, the total differen-
tial delay should remain short in comparison to the pulsewidth; i.e.,

t nlax– tmin = N: At << tpul~e. (2.20)

[The combination of this criterion and condition (2. 14) thus places restrictions on the maximum
number of steps and the minimum optical bandwidth.] If (2.20) is applicable, then ( IF (t - rn) 12)
may be removed from the summations in (2. 16) and (2. 19), which are then subject to the normaliza-
tion condition (2.5); e.g., the total average power can be written as

(Po(t)) = ( lF(t) 12) (2.21)

In the quadrature configuration, the summations will satis~ the condition (P&+(t)) + (PJ -(t))

+ (P;+ (t ).) + (PF -(t)) = (Po(t ) ); thus, in the ideal case where these summations can be exactly bal-
anced, the profile becomes

(I(Q)(x,f)) = (1/a2)(Po(t)) Q (~x/a ,6a/a) , (2.22)

.



where

Q(irx/a ,da /a) = ~
[

x — @a ,Ty – vda
@Es” a

v a
1

The S(T x/a) and Q (~x/a , ~a /a ) profiles are compared in Fig. 2.

(2.23)

III. NONUNIFORMITIES DUE TO RESIDUAL INTERFERENCE

The target responds to quantities, such as intensity or ablation pressure, averaged over some fin-
ite number r/tcof coherence times. Unlike ensemble averages, these finite time averages will retain
small nonuniformities due to residual interference among the beamlets, even if the bearnlets are mutu-
ally incoherent. This section will examine those nonunifonnities in the limit where perturbations due
to aberration and beamlet divergence are negligible. For simplicity, we consider only the complete
overlap configuration; the quadrature configuration will produce similar results for the cases of
interest where ~a < 0.4a. The amplitude E (x,t ) can then be approximated by the zeroth order term in
Eq. (2. 12), with & = O. Thus, the time-averaged intensity profile can be written as the multimode
expansion

(/(X,f))7 = (c/87r) ( IE (X,f) I 2),

= ~ S(T~)~ (Pm (r)), exp (iK~ . x), (3.1)
m

where s (~x/a ) is the ideal diffraction envelope defined in Eq. (2. 17), and

(Pm(t)), = ~ An A*n+m exp (i@’n - ‘@’n+m)J’+rF(t’ - ‘.) F”(t’ - t.+J 4, (3.2a)
n

t. T

~ = k(xn+m - xJ/f = mkD1/f = (2?r/a)m = mAK (s~b)

are, respectively, the complex amplitudes and spatial frequencies of the transverse modes. The m = O
amplitude (Po(t ))7 = ( IF(r) 12), is the time average of the total power, so (3.2a) represents a straightfor-
ward generalization of (2. 16). All of the m # O modes, which describe the interference pattern, are
statistically independent, except for the constraint (P_m (r)), = (Pm(t)),* required to ensure that (1 (x, r ))7
is real.

The actual target acceleration is determined by the average ablation pressure (p (x,t ) ), , rather
than the intensity itself. In general, (p (x,t ) ), can be related to the instantaneous intensity l(x,r ) by a
space-time convolution over the conduction zone between the ablation surface and absorption region.
This relationship will depend upon the detailed hydrodynamic behavior within that zone, and upon the
optical wavelength, average irradiance level, and other parameters that also affect the absorption in
the underdense plasma.

To a good approximation, one can ignore the temporal convolution and relate the time-averaged
pressure (p (x,r) )7 to a spatial convolution over the time-averaged intensity (](x,t ) ), in the limit where ~
satisfies the condition

where t.and t,hare, respectively,

‘pU!* > ‘hydra > T >> t~,t,h, (3.3)

the ion-acoustic transit and thermal diffusion times across the con-

r-.,
w

duction zone. These times are given by the approximate expressions
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where d is the effective width of the conduction zone, c~= 9. 8“x 105 (z/A) 1/2 [Tc (eV)]’ /2 (with atomic

number A and charge state Z) is the ion-acoustic velocity in cm/see, v, =4.2 x 107 [T, (eV)] 1‘2 is the
electron thermal speed, ~ei =3.4 x 105 [Tc(eV)]3’2 /ne in A is the electron-ion collision time3’ in see, n,

is the electron number density, and 10A is the Coulomb logarithm. For recent NRL planar-target
experiments using 527 nm, 2 ns pulses at intensities -1013 - 1014W/cm*, 20 we estimate
T, -500 eV ,d -50 Pm,5 and n, - 1022cm-3; these parameters then yield t, -320 ps and r,~ -360 ps.
Condition (3.3) is thus reasonably well-satisfied as long as the gross hydrodynamic response of the
target occurs on nanosecond time scales. A similar result is expected for reactor-sized targets operat-

ing at shorter optical wavelengths, longer pulsewidths, and higher intensities. For example, for a
possible high gain pellet driven by a few MJ, 1/4 ~m laser with a 5-10 ns pulse at 5 x 101qW/cm2, we
estimate T, -750 eV, d -20- 50~, and n,- 4X l&2 cm-3; this gives t,- 100-250 ps and

t~h- 80–500 PS.

The spatial convolution over (l(x,t ))7 is approximated here by using the heuristic “cloudy day”
modell’2 to account for thermal smoothing effects within the conduction zone. If (j7 (K,t ) )7 and
(~ (K,t )7 are the transverse spatial Fourier transforms of (p (x,t) ), and (l(x,t) ),, respectively, then the
cloudy day model provides the simple result

(~(K,t)), = C (~ (K,r)), exp (- IKld), (3.4)

where C is a constant. Taking the Fourier transform of Eq. (3. 1), and recalling definition (2. 17), one
obtains

(F(Q)), = C’ ~ Y(K – KJ (P~(t)), exp (-l Kid), (3.5)
m

where C‘ = C/a*, and

i? (K) = jd2x S (r ~)exp (-i K“ x)

{

(1- lKrl/fw(l - l~V1/M)a2forl~Tl and If$.1 sAK

= Oforl&[orl~yl>AK

is a triangular function whose effective width AK = 2ir/a = kD, /f is the intermode spacing. [See
Eq. (3.2b).]

We are primarily interested in focal spot diameters
width of the conduction zone, specifically the case where

AKd = 2rd/a <

Expression (3.5) is therefore well-approximated by

(-a ) that are large in comparison to the

1. (3.6)

(FW)), = C’ ~ F(K – Km) (F’~ (t))rexp (– lKmld),
m

which transforms back to

(P w)), = C’,S(T ~) ~ (Pm (t))rexp (–l Km Id) exp (iKm . x).
m

(3.7)
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Comparing this result to expression (3. 1), we see that thermal smoothing tends to filter out the higher
spatiai frequency modes arising from the interference, but has little effect on the diffraction envelope

S(7rx/a).

In the narrowband limit where t, exceeds the total time delay t~a. – t~in = N: At, the beamlets
would remain mutually coherent. This limit corresponds to the RPS technique .2z’23The amplitudes

(Pm (t)), retain large randomly-phased contributions for all m #O, in addition to the m = O term
(Po(r) ), = ( IF (t) Iz),; hence the average intensity profile (3. 1) would consist of a stationary but ran-
dom multimode interference pattern modulated by the smooth S(rx/a ) envelope, as illustrated in Fig.
1. Similar considerations apply to the ablation pressure profile (3.7), except that the higher spatial
frequency components of the interference pattern are suppressed by the exp (- 1Km Id) factors. This
faltering effect thus provides the primary basis for the RPS technique. In the following paragraphs,
we will derive approximate expressions for the RMS mode amplitude of the nonuniform time-
averaged intensity and ablation pressure. These expressions can be used to evaluate the standard

deviations of the interference nonunifomities for both the narrowband and broadband cases.

A. Complete 1S1 Operation

For complete 1S1 operation, Au must be broad enough to satisfi conditions (2. 14) and (2.20),
thus ensuring mutual incoherence for ail of the beamlets. The m # O components of iJ~ (t)), will

then decrease in relation to (JO(t)), as r, /r decreases; i.e., expressions (3. 1) and (3.7) will become

dominated by the S (T x/a ) profile as the interference structure fades away. In the ensemble limit
where tC/r - 0, expressions (3.2a), (2. 13), and (2.5) yield

(Pm(t)), - ((Pm(t))), = 13m.o((lF(f) l’)),, (3.8)

and both (1 (x,r) ), and (p (x,r) ), [as given by the approximation (3.7)] reduce to the exact S (rx/a ) pro-
file. The double average in (3.8) allows an averaging over the slow nonrandom variation of (P. (t ) )
in cases where ~ could become a non-negligible fraction of tPul~~.

The relative magnitude of the interference components of (1 (x,t ) j, and (p (x, t) ), can be quanti-
fied by comparing the RMS mode amplitudes for m # O to that of the DC(m = O) component.
Expressions (3. 1) and (3.7) suggest the most appropriate definitions are (for m # O)

Uf (m) = ( l(~m(t))r12)”2 t ((po(~)):)”2 (3.9a)

aP(m) = ( I (P~(t))rl 2, “2 exp (- I& ld)/((1’0(~))j)”2 = u[(rn)f=p(- I M I Md) (3.9b)

where the ( ) brackets again denote an ensemble average, and [recalling (3 .2 b)] AK = k D, /f = 2m/a.
The total RMS nonuniformities due to all of the statistically independent m # O modes are then
evaluated from the vector sums

[Z 1I/2

[z 1l/2U[ = a}(m) , UP = u~(m) .

L**” J lm*O 1

A subsequent paragraph will show that ((Po(t))~)112 = ((PO(r)),); thus, expressions (3. 10a,b)
regarded to a good approximation as the standard deviations of the spatial nonuniformities.

(3.10a,b)

may be
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From expression (3.2), we obtain

( 1(~.I(t)),12)= ~ ~ ~.~*.+~A*n,An,+~ exp [i(@’n - ~’n+~ - @’nj+ r#J’nj+~)]

t+r d~l

x J, ~’i~:7 $(F(” “II) ‘“(r’“.+ JF*(’” ‘r.’)‘(’” “.’+J)
(3.11)

for all values of m, including m = O. We now assume that the broadband light is sufficiently chaotic

to satis& Gaussian statistics, thus allowing the factorization32

(F(t’ - tn)F* (t’ - rn+m)F* (t’’ -tn,)F(rn, +Jj, +Jj

= (F(t’ - tn)F*(t’ -rn+m)) (F*(t’’ -rn,)Ftn,+m)), +m))

+ (F(r’ -tJF*(t’’ -tn,))(F*(tn+m)+m) F(r’’–rn, +J). (3.12)

Temporal mode locking behavior due to “instantaneous” nonlinear effects, such as self-focusing or

harmonic conversion, will invariably have some effect on the statistics. However, the Gaussian
model is expected to remain a reasonable approximation as long as the number of temporal modes

rpulseltc ( = AvtPUl,,)remains large and the average nonlinear phase shift does not exceed 27r by a large
amount. Substituting Eq. (3. 12) into (3. 11) and recalling expression (2.2a) and condition (2.20), one
obtains

(l(~m(t))~l’) = ~~+’~ (lF(t’)12)\~+’~ (lF(~’’)12)

X ~ ~ Z4nA*n+m A*njAnj +m exp [i (f$’n - +fn+m - @’nJ + g!l’n, +m)]
n n’

x [~(tn+m - tJ~*(tnl+m - r“,) + -f(f ’ - r“ — f“ + t“/)~*(f ’ - t“ - tn+m + tn, +m)] (3.13)

Equation (3. 13) gives for the m = O term [recall the normalization (2.5)]

((PO(r)):) = (+’+( lF(t’) 1’) j~+’ ~ (l F(r’’) 12)

(3.14)

The second term within the square brackets is nonvanishing only when t‘ - t‘’ - tn + tn, = O; hence,
if condition (2.20) is satisfied, one can approximate ( IF (t’) 12, by ( IF(t” ) 12, when evaluating the con-
tribution due to this term. In the limit where the total time delay N: At satisfies additional criterion
N: & < er, condition t’ - t“ – tn + tn, = O can be attained for all n and n’ over most of the
(t,t+ T) interval. The time integrals will then be approximately independent of n and n’, so the sum-
mations can be evaluated immediately with the aid of Eq. (2.5). Thus,

((pO(f)):) = ((lF(t)12)): + (( \~(t)12)2),&f,/T,

where ( IF(t) 12) varies negligibly within times - tc

TRh.ts =

[

c’4- tc

10

: <r. and

1

I 12

~(t)l~ = 1 (3.15)



:2
<-;,

is a constant. In the opposite limit where r e e N: At, the second term of (3. 14) becomes compar-
~,
g?..,

able to
{r,..,
(w?
....

(( l~(t)12)2),z l~n14 - (( lF(t) 12)2),/N:,
,...?.
,...-,,
rr I

n K

which is again small as long as N; > > 1. Recalling expression (3.8), one thus obtains the expected

result

((~o(f) ):) ~ (( I ~(~) 12)): = ~(po(t) )7)2

in all cases. The standard deviation in the case where ~ > N; At is approximately

(3.16)

[ 1
l/2

a~ = (( Po(f)):) – (( Prj(r)),)2 / ((~o(t))r) ~ yRpJs (tc/~) 112 < I/N.Y , (3.17)

assuming that r is sufficiently short in comparison to rPul,. that the slowly-varying quantity ( IF(t) \ ~)
satisfies (( lF(t) 12)2 )~’2 = (( IF(t) 12)),. In contrast to Eqs. (3.9) and (3. 10), this quantity measures
temporal fluctuations of the entire proftle amplitude, rather than spatial nonuniformities.

For m # O, expression (2.13) eliminates the Y(rn+~ -tn) terms in Eq. (3. 13), and the random

phase factors +’. - @’n+ ~ - @’nt+ @’n,. ~ ensure that only those contributions with n’ = n will add

coherently in the second set of terms. Equation (3. 13) then reduces to the result

(I(ptn(t)), lz) ‘(( \F(r) 12)2 )T~iiMS :~1 Anl*[A”+mll (3.18)
n

Substituting expressions (3. 18) and (3. 16) into (3.9) and (3. 10), while again assuming tc<<T << tpul,e,

one obtains the general results for m # O

uf(m)/61 (In) = uI/6J = UP(m)/aP (m) =“fJP/dP = “fRMS (Ic /7)”2, (3.19)

where the factors

[ I

I12

fi~(rn)= ~\~n\21~n+m12 ,

[ 1.

I12

i3\ = ~ 3; (m) (s~oa,b)

n m*O

[1

l/2

3P (m) = dl(m)exp (– I m I AKd), Gp = ~ 6~(m) (3.21a,b)
m *O

describe the nonuniformities in the narrowband (RPS) limit. Expressions (3. 19) and (3.21) show
explicitly that two independent mechanisms are combining to smooth the ablation pressure. The ther-
mal diffusion factors iiP(m) and 6P filter out the higher spatial frequencies, but have little effect on the
longer wavelength modes unless A Kd - 1. The temporal factor ~~Ms(tC/7) i‘2 = (t,/7)1 ‘2, which akO

smooths the irradiation, reduces the relative magnitude of the nonuniformities as the number of

independent random intensity contributions T/tcincreases; it has the exact form that one would expect
from a random-walk process where the RMS nonuniformities increase as (7/tC)*i2, while the average
fluence increases as r/tc.

Useful approximations to (3.20) and (3.21) can be obtained using the normalization condition
(2.5), provided that the laser output beam is not too badly aberrated (e.g., pealdvalley spatial intensity
variations < 2: 1). In the case of a nominally flat-topped circular beam of diameter D =Ns D 1, one
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can approximate IA. Iz by the average
N~ >>1, the n summation in (3.20a) is

value 4/rN~ for [ XnI s D /2, and zero elsewhere. For
therefore well-approximated by (4/rN~)2 ~, where ~ is the

area of the overlap region between two circles of diameter Ns whose centers are separated by distance
Im I # O; thus, one obtains

;1 (m)
[

= (81’z/7rN~) T/2 – sin-t 1
l/2

(lml/N,)–(lml/Ns) (l-lm12/Ni)”2 , (3.22)

which is plotted in Fig. 4.

The standard deviation of the integrated intensity can be found immediately by combining (3. 19)
and (3 .20a,b) and using the normalization (2.5):

5[ = (1 - ~ lAm\4)1’2 = (1 - 4/mN~)]’z ~ 1 (3.23a)
m

01 ~ yRMS (tc/7)’12 (3.23b)

Expression (3.23a) shows that without temporal averaging, the RMS amplitude of the ix-radiance
nonuniformities remains nearly independent of the number of steps N~, and is comparable to the DC
term. By increasing N~, one merely shifts the spectrum to higher spatial frequencies, without signifi-
cantly affecting the total energy in the interference pattern.

The standard deviation of the ablation pressure can be approximated by substituting expression
(3.22) into Eqs. (3.21a,b) and (3. 19); thus UP = ~,~~ (t, /~) ‘lZ $, where the 2D summation

‘p‘{+33[:-sin-”:’
1

)

1/2

-IP[ (1 - IP12)”2 exp(-2AKdNsl~l) ,(P =m/Ns s 1) (3,24)

is plotted vs AKdNs in Fig. 5. To illustrate these. results, we consider the parameters used for the 1S1
simulations shown
beam, stepwidth
AKd = (k D,/f)d
7> loofc.

in Sec. V; i.e., A = 527 nm, f = 6 m, Ns = 16 steps- across the FWHM of the
D, = 1 cm, and absorption-ablation distance d = 50 ym. One then finds
= 1 and AKdNs = 16, thus giving tiP = 6.6% from Fig. 5 and aP e 0.66% for

For short wavelengths and high gain targets, where condition (3.6) is well-satisfied (e. g.,
AKd = 2md /a s 0.5), Fig. 5 shows that tiP depends essentially on the single variable AKdN~, and fol-
lows the simple approximation 5P ~ 2t12/AKdNs. Thus, for a wide range of conditions applicable to
high gain laser fusion, the standard deviation of the ablation pressure can be approximated by

‘P 5 7RMS(tc/7)’12L+p = u: 5P (3.25a)

5P ~ 2~’21AKdNs = a /2”2 xdNs = (M2ii2 rd) . (f/D) (3.25b)

where f/D = f /Ns D, is the overall F/number of the beam. As a numerical example, we choose
N$ = 60 steps/beam, a = 1.5 mm, d = 20 to 50 pm, coherence time q = 1 ps, and averaging time
r = 1 ns. (The 1.5 mm would allow pellets up to 2 mm radius with quadrature illumination, and the
20 to 50 ~m is an appropriate range of absorption-ablation distances for 1/4 pm light.) The standard
deviations for the narrowband and broadband cases are then 5P ~ 11 to 28% and Up ~ 0.4 to 0.9%,
respectively, and the total F/number is f /Ns D I = a /Ns X = 100 for X = 0.25 ~m.
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We close this discussion with a caveat concerning the slow residual fluctuations in the ideal .
:<~-..,

ablation pressure

@o(W)), = C’ (Po(t)), S(7rx/a))

due to the (l’o(t)), fluctuations. According to the discussion leading to expression (3. 17), the

deviation UOof (Po(r))r is the lesser of (t, /T) ‘ 12 or 1 /N~, and can therefore amount to several

r-
>.$
</-,
w,,

(3.26) .,,,,,,...,,

!.,”,’
standard

~
~::

percent,

even for 7 - 1 nsec. This poses no problem as long as one uses only a single laser beam. In a multi-

beam spherical illumination geometry, b–g ‘g however, it could lead to a small illumination imbalance,

unless all of the beams exhibit nearly the same random temporal behavior. One can avoid the prob-
lem by using a single master oscillator and balancing the net time delays within the different chains as
closely as possible (at least to within times << r,, trk). This will allow some interference to occur
among bearnlets arising from different beams; however, the large angles (typically > 200) between

these beams insure that the resulting transverse wavelengths will be on the order of microns, and
hence too short to cause any problem.

B. Partial 1S1 Operation

Complete 1S1 operation may be difficult to implement in a large aperture or highly aberrated
laser because the large number of incoherent beamlets that could be required would invalidate condi-
tion (2.20). The number of beamlets is determined by the step width D I , which depends upon the
target diameter ~ 2a = 2Xf /D, and the amount of aberration in the laser. For k e 1/2 pm, reason-
able focal lengths ( e.g. f s 30 m), and high gain targets of a few mm diameter, one would typically
need D 1 < 1 cm. With a 100 cm aperture per beam this would require N: > 104 beamlets; it would
significantly affect the temporal behavior of the pulse, because for t, -1 ps, N: & > N: t, - 10 ns.

One possible way .to avoid this problem is a partial 1S1 scheme, in which the echelon step
sequence would be repeated after every N < Ns steps across the aperture, (e. g., see Fig. 12).
Expression (2. 13) would then be replaced by the more general condition

-f(t” - t“,) - ~ 6“.. *,ym , (327)
m

where (m, ,m,,) range over all positive and negative integers, including zero. Because the repeated
steps (m # O) remain coherent, they create stationary interference patterns at the target. However, if
one chooses N sufficient y large, these patterns will have only high spatial frequencies of magnitude
NAK, 21‘2NAK, 2NAK, etc, and can therefore be smoothed out by thermal diffusion. The relative
magnitude of the interference components of @ (x,r )), can again be calculated from (3.9) and (3. 10),
using expression (3.27) and arguments similar to those presented before. Thus, (3. 19) and (3.21)
generalize to

(3.28)

where the n summations again extend over all N; bearnlets. The first term within the brackets
describes the residual incoherent contributions, and is identical to expression (3. 19) and (3.2 lb); the
second describes the contribution of stationary interference patterns due to the repeating steps. If one
chose N = 1 (corresponding to the random phase case) then the second term would be identical to the
thermal smoothing factor (3.2 lb), and would become dominant for t= <c T. If N is chosen large
enough to satisfy the condition 2NAKd >> 1, then the second term becomes negligible and (3.28)
reduces to the usual 1S1 result. Thus, for a large high gain pellet where condition (3.6) is well-

satisfied, the standard deviation of the ablation pressure would still be described by (3 .25a, b). The
1S1 configuration recently proposed for the Sirius-M test reactor design18 provides an instructive
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numerical example. Here, each 1.2 m aperture (square) beam was divided into a total of N~ = 240

steps, which repeat after every 60 steps. With a stepwidth D, = 5 mm, focal length j = 30 m, and

wavelength h = 1/4 ~m, this gives a
~m and r/tc = 1000, we calculate UP
1.2 m beam is F/25.

IV. ABE~TION

= f MD, = 1.5 mm. Assuming (as before) that d = 20 to 50
-0.1 to 0.25% from” (3.25a, b). The overall F/number of each

AND BEAMLET DIVERGENCE EFFECTS

This section examines perturbations of the ideal target profile due to laser aberration and beam-
Iet divergence. In order to separate out these effects, the analysis will be carried out in the ensemble-
average limit tC/ r - 0, assuming complete 1S1 operation defined by conditions (2. 14) and (2.20).
Because the resuIting expressions contain no interference terms, and therefore involve only the long
scalelength functions such as S(Tx/a ) and its first and second-order gradients, they should apply
equally well to the average intensity or the ablation pressure as long as condition (3.6) is satisfied.

A. Completely Overlapped Beamlets

The complete overlap configuration is obtained by setting all j3n -0 in Eq. (2. 12). Applying
conditions (2. 13) and (2.2 1) to (2. 12), and retaining only perturbation terms up to second order, one
finds the average intensity (/(x,z) ) = (c /87r)( 1E(x,z ) I‘):

(I(x,z)) =
(P,)
~z

{[
lAn12 - Re(An*Bn) “ V1 + ~BnBn*:V~V4

1[)
s r:

n

- [Oinc[+ [ 1}

[Re(A*VIVIA)n + (V LA)n(VLA*)n]: V~Vlsinc T: , (4.1)

where

B(x) = (.f/ik)(V LA) + (z/f)xA. (4.2)

[Recall that ( ). evaluates the enclosed quantity at point Xn.] The slow temporal variation of

(f (X,Z,r ) ) and (Po(r) ) (on a scale of rP.l,e) and the z-dependence of B,,(z) have been suppressed here in
order to simpli~ the notation. Because A (x) varies slowly across the beamlet width D,, the 2D sum-
mations over n can be approximated by
replaced by

integrals. For example the normalization (2.5) can be

=J [A(X)I’*= 1, (4.3)

and integration by parts can be used to eliminate the last pair of terms in (4. 1); i.e.,

~Re(A*VLV.A). = ~&i*V&A +c.c.)
n

= - J~(VLA)(VLA*) = -~(VLA)(VLA*),
n

“Equation (4.1) therefore reduces to

(1(X,2)) = [1 -c,(z)” v ~ + +C2(Z): v J. v L] (w(x)),

where (l(o)(x)) = ((Po)/a2) S(rx/a ) is the ideal target profile defined in Sec. II, and
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c

C,(z) = j~Re(A*B),
.7,

Cz(x) = ~ ~ BB* (4.5) ::! ‘
>.,

are the aberration coefficients. These coefficients can be rewritten in terms of the phase @(x) and ~,
<.,e

modulus IA (x) I of the tiplitude A(x); i.e., r-r,
,...-.I~r,
c::?

c,(z) = J* [A(x)l’ue(x)+; x], (4.6a)

(4.6b)

where O(x) = (1/k ) V ~~(x) is the refraction angle acquired by the aberrated wavefront around point x,
and the squared vectors [ ]2 in (4.6b.) represent diadic products [ ] [ ]. Expressions (4.6a,b) can
be interpreted physically as intensity-weighted averages of the bracketed quantities over the laser
aperture.

It is useful to relate Cl(z) and Cz(z) to spatial moments 33 of the coherent (but aberrated) focal
distribution (l=(x, z)) that the laser would produce without 1S1. As shown in the appendix, expression
(4.6a) is just the centroid of the coherent beam:

cl(z) = (xc], = J(Mx,z))xd?@-(x,z))d*x (4.7)

This result can be readily understood in terms of geometrical optics. A ray passing through point x in
the laser aperture will intercept the target plane at point xc(x) = ~O(x) + xz /f; expression (4.6a) then
averages all such contributions over the entire laser aperture. For the second moment [xcxc J, which
is a measure of the R.MS width of (/c (x, z ) ), geomerncal optics would average the diadic
~13(x) + xz /~]2 over the laser aperture, thus giving the first set of terms in (4.6b). A more thorough
treatment including diffraction yields the complete expression (Appendix)

c~(z) = {xcXc], =

although the geometrical optics contribution
most of the aberration resides in the phase.

The aberrated 1S1 profde (4.4) can now

J(lc(x,z))ti2x/j(Ic(x,: ))d’.r, (4.8)

will usually remain dominant in saturated lasers, where

be expressed in terms of the coherent moments:

(1(X,2)) = [1 - [Xc]z “ v ~ + + (Xcxc]z : v * v J(P)(X)) (4.9)

By dividing out the maximum value (1(0)(0)), one can rewrite this in a dimensionless form suitable for
comparing the magnitudes of the perturbation terms; i.e.,

I (Z(X,z))/(Z(0)(O)) = S(~x/a ) - m((xc ], /a). S’(rX/a )

+ ~#([x~xc JZ/a2): S“(7rx/a),

where

S’(a) ~ V,J(a) , S“ = VaV=S(a),

(4.10)

(4.11)
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and v. = a/a~. T-he functions S(a,., O), S ‘.,(ct.,, 0), and S “.~ ~.,,( O) are compared in Fig. 6. Equation

(4.9) can also be expressed in an alternative form by expanding (z(o)(x)) around point {XC 1, and, as
usual, retaining terms only up to second order in the gradients; i.e.,

(Z(x, z)) = [1 + +@xc&)z : v ~ v L](z(o)(x– [xc],)), (4. 12)

where

[AXCAXCJ:= (xcxc]: – {XC], (XC):. (4.13)

Because (I(o)(x)) is symmetric arQund x = O, it is apparent that [xc] also defines the centroid (and
hence the alignment) of the 1S1 profile. A nonzero value of (xc], would be of little consequence in a

flat foil experiment, where precise alignment is unnecessary. However, in a spherical geometry
where each laser beam must be properly centered onto the pellet, {xc]: should be treated as a pertur-
bation term [cf. Eq. (4.10)] if it cannot be entirely removed by the alignment system.

If the aberrations are spatially random, one can use a simple statistical mode134 to estimate both

the magnitudes and reproducibility of the perturbation amplitudes in Eq. (4. 10). This model should
provide a reasonable description of perturbations arising from small-scale effects such as turbulence,
multiple surface nonuniformities, and residual lens aberrations, which contribute the lion’s share of
the far-field broadening and are the most difficult to eliminate. Systematic lens aberrations, such as
astigmatism in angularl y—multiplexed KrF systems,35’3G can be largely compensated within the laser.
Large-scale effects, such as thermal gradients, tend to cause gradual beam steering effects rather than
any significant broadening, and can be balanced out in real-time by an automatic alignment system.
For simplicity, the model will treat only phase aberration, which is the primary culprit responsible for
both beam steering and broadening effects in real lasers. The random phase aberration is character-
ized by an effective coherence width Sti < D (where D is the laser aperture), over which the RMS
phase shift is 7. The local refraction angle O(x).= (1/k) V ~@(x) can then be characterized using a
number

N,j) = (D /S<,~)2 > I (4. 14)

of statistically-independent contributions tlj whose ensemble-average values are Wj) = O (assuming that
the laser is properly aligned) and whose RMS amplitudes are

tlm~ = (Idj \2)1~2= r/ksu~ = M2s&.

From Eqs. (4.6a,b) (4.7) and (4.8), one thus obtains for the relevant moments

2

{xc] = ~~ej,
N& j.l

{Xcxc) = JL; gjgj,
N& j.l

where the subscript z has been dropped in order to simplify the notation.

Combining Eqs. (4. 14)-(4. 16a) and using the statistical conditions
(Oj . @j ) = 19&s 6ij, one obtains the ensemble-average ([xc]) = O and the RMS centroid

((xc))iws = ( t [%) 12)”2= f %w/Nab = f M2D ;

(4. 15)

(4. 16a,b)

([ojl) = O and

(4. 17)

i.e., the RMS misalignment due to small scale beam steering effects is approximately half the
diffraction-limited far-field width f MD. (This expression probably represents an upper bound on the
misalignment because at least some of the contributions to it may be correctable by an automatic
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alignment system.) The RMS value of the S’(nx/a ) coefficient in Eq. (4. 10) thus reduces to the sim-
ple result

R, ~ T((Xc])RMs /a = (~/2)f X/Da (4.18a)

= Ir/2Ns , (4. 18b)

where Eq. (2. 10) and the relationship Ns = D/D I was used ‘to obtain (4. 18b). [Note that the criterion

specified in Sec. II requires NXIN& = Sti /D, > >1 (e.g. > 3) to ensure the accuracy of the perturba-
tion expansion (4. 10). For the two large-scale 1S1 examples discussed in Sec. III, where we chose
Ns = 60 and 240, the respective values of R, are 2.5% and 0.6%. It should be noted that expression
(4. 18a) is also applicable to conventional illumination schemes, b-8 where a would represent the diam-
eter of the quasi near-field profile at the target. Obviously, aberration-induced beam steering is an
issue that can affect all spherical illumination schemes, not just 1S1.

The mean value of the second moment (Ixcxc ]) will reduce to its diagonal elements

([x21) = ([Y$I) = (1 I xc 120/2 m long as the aberration is spatially-random. Combining Eqs. (4. 14),
(4. 15) and (4. 16b), one obtains for the mean square diameter of the (non-ISI) focal spot

which can be rewritten in the intuitively satisfying form

Nab = 2({ Ixc I‘])’’*/(fX/D)

= (RMS diameter ) / ( diffraction - limited diameter ). (4. 19b)

The effective magnitude of the S’ ‘(rx/a ) coefllcient in Eq. (4. 10) is then

which tends to broaden the 1S1 profile, as shown in Fig. 7. If the laser aberration N.(, were only a
few times diffraction limit, one could virtually eliminate this broadening term without using an exces-
sive number of steps; e.g., a choice of Ns /NA >10 would reduce Rz to about 1% or less. However,
the high power multistage lasers envisioned as fusion drivers are likely to be heavily aberrated, with
typical values N* - 10 to 20 for each 30 cm of aperture. It is therefore expected that Ns /N.~ will lie
in the range of 3 to 5, giving the respective values R2 = 15% to 5%. The function S’ ‘(~x/a ) is
smooth and symmetric (Fig. 6), so a perturbation amplitude of this size will be tolerable as long as it
remains reproducible to within - 10%. Because of the spatial averaging process inherent in expres-
sions (4.6a,b) one can expect a high degree of reproducibility.

The magnitude ARz of the non-reproducible part of the perturbation amplitude can be estimated
from the RMS deviation

A( IXC12] = [((lxc 12)2)–({ Ixc 12))2]’/2 (4.21a)

~;

= ~[~((lej 14)–(lej12)2)11’2,
N& j.l

(4.21b)
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where expression (4.2 lb) follows from (4. 16b) and the statistical independence of the Oj
tions. Under chaotic conditions, one can approximate ( 16j 14,- ( 10j I‘)2 by Ohs, thereby

A{IXc 12, = j 213~Ms/NA. The resulting contribution to the perturbation amplitude is then

AR* = (T2/8)4A{ Ixc \ 2)/a2

= Rz/N& = (Ir2/8)N.h /N:,

contribu-
obtaining

(4.22)

according to (4. 14), (4. 19a) and (4.20). For the simulations discussed in Sec. V (Nab = 5 x diffrac-

tion limit and NS = 16 steps across the FWHM of the beam) one expects ARz = 2.4%; however, AR?
will be much smaller under the conditions applicable to a fusion driver. For example, a 20 x
diffraction-limited beam in a 30 cm aperture with @ steps would have ARz = 0.7%; a 1.2 m com-
pound aperture consisting of a 4 x 4 array of such beams (i.e., N* = 80 and Ns = 240) would allow
only AR2 = 0.17%.

B. Qwchtwe Configuration

The above perturbation treatment gives similar results for the effects of phase aberration and

beamlet divergence on the quadrature profie, at least for the cases of interest where the offset ~a
satisfies ~a e 0.4u. Unlike the complete overlap case, however, the quadrature profile (I(Q)(x)) may

be affected by laser intensity nonuniformities even if the usual perturbation terms in Eq. (4. 10) were
negligible. To examine this effect in greater detail, we rewrite expression (2. 18), assume condition
(2.20), and recall the normalization (Pi+ ) + (Pi-)+ (Pi+) +(P: -) = (PO):

( I(Q)(X))
(P,)

= ~ Q(zx/a, &a/a) + ~ ~
(P&) - (P(’” )

#,v +’,V’ 8a2

x

[[

s 7rx-p~a” y-vtia
,7r

H

- s 7r-r
- p’~a y - v’6a

,T
a a a a

)1 ‘“

where Q (~x/a ,6a /a) is the ideal quadrature defined in Eq. (2.23). We now expand the
up to second order around S (rx/u ) (valid for small ba /a ) and combine the ,P~”), (P&’”;
to finally obtain

where

(P,)
(I(Q)(X)) = ~

{
Q(rx/a ,~a /a )

}
+ (7rr5a /a) [Cx S ‘X(7rx/a) + CYS‘Y(7rx/a )] + (m5a /a )2 C,, S “,,Y(7rx/a ) ,

[1
(0) (e)

[1Cx= ~-~ ~lAn[*,cy=~ && 1/4. [2,
n’ n, n, n, n, n“

[

(o)(o) (t) (e) (0) (e) (e) (0)

1

Cv= ~~+~~-~~–~~ [An12,
n, n, n, n, n, nv n, n,

(4.23)

S functions
summations

(4.24)

(4.25a,b)

(4.25c)

and the functions S’(rx/a ), S“(rx/a ) are defined in Eq. (4. 11).
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-..
One can null out

orienting the echelons
most of the contribution to coefficients (4.25a-c) just by carefully aligning and ~~~
within the beam; however, in practical lasers, where the saturated near-field

~-.>
~..,,

profile ~aries during the pulse duration (and may not even be completely reproducible from shot-to-
shot), the residual contributions should probably be treated as random variables. Each of them would
then have the approximate RMS value

CRMS= (+Vjj’2(A IA I‘)~Ms = (1/2’w~)(A[A [2)RMs/(l A 12)U., (426)

where ( IA I‘)=v = 1/N~ and (AI A I~)~~s respectively describe the average and RMS deviation of the
intensity across the laser profile. For example, a ratio (AI A I‘)~~s/( IA \ ‘)., = 0.15 (corresponding

to = 2:1 pealdvalley variation) would give CRM,S= 0.1 /Ns, which gives CR~s z 0.7’% for NS = 16
and 0.2% for Ns = 60.

V. NUMERICAL SIMULATIONS OF 1S1

The beam smoothing behavior of 1S1 can be clearly illustrated by numerical simulations of the
time-averaged intensity and ablation pressure profiles for a planar target. These simulations were car-
ried out for 0.527 ~m light by a 3D numerical code (CHAOS), which evaluates the diffraction
integral (2. 6a) for an incident laser beam of arbitrary aberration, but ignores refraction and filamenta-
tion in the underdense plasma. Thermal smoothing effects are model led by the heuristic “cloudy

day” approximation, as defined in expression (3.4), assuming in these examples an effective
absorption-ablation distance of d = 50 ~m. For the simulations shown here, the chaotic temporal
behavior of the laser light is modelled by Gaussian statistics. The real and imaginary parts of the

complex amplitude F(r) are assigned independent random values with a Gaussian probability distribu-
tion, and these values fluctuate randomly from one coherence time to the next. Some of the simula-
tions were also carried out using other statistical distributions, such as random phase with constant
intensity; the results indicated that the 1S1 smoothing should be relatively insensitive to the statistics of
the incident light.

Figure 8 illustrates the problem encountered by the conventional illumination scheme.’x ’011
where the target is simply placed in the quasi near-field of the focusing lens. In order to model a
saturated laser beam, the incident aberration was chosen to reside primarily in the phase: i.e., the
-20 cm beam had a 5 x D.L. angular spectrum, but only - 30% pealdvalley intensity nonuniformi-
ties. This was accomplished by choosing the random complex amplitude A (x) to satis& Gaussian
statistics, then attenuating the intensity nonuniforrnities by replacing the modulus IA (x) I by

[A(x) I 1’8. The overall laser profile was modelled by multiplying the resulting values of A (x) by a
hypergaussian envelope {exp[-(2 Ix I /D) 10IJi‘2. At the target, where the beam has focused down to
> 0.5 MM, the irradiance nonuniformities are significantly worse because of the phase aberration in
the incident beam. 10’1* Large random nonuniforrnities are also very evident in the ablation pressure

profde, although thermal smoothing has removed the higher spatial frequency components.

Figure 9 models the original version of the RPS technique. z2’23 A pair or reflecting echelons
(Ns = 20, D, = 1 cm) have been inserted into the beam with their alternating steps tilted to produce a
quadrature profde at the target plane, which is now located in the far field of a 6 meter lens. (This
configuration is similar to the one used in recent NRL experiments with broadband 0.527 ~m light .20)
In this case, however, the bandwidth AV is assumed to be sufficiently narrow that all 400 beamlets
remain mutually coherent, thus resulting in a complicated interference pattern that remains stationary
throughout the pulse. The thermal smoothing mechanism was unable to filter out the lower spatial
frequency components in the corresponding ablation pressure. The maximum peakhalley deviation
from the ensemble-averaged profile (p(x) ) was found to be 37%, which is consistent with the RMS
value 5. = 6.6% calculated in Sec. III. Because the RPS technique allows a smaller stepwidth than
1S1, it would be possible
Eq. (3 .25b).] However,

to reduce this nonuniformity by increasing the number of steps. [E. g., see
it would also be necessary to either increase the laser aperture NSD I or
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decrease the focal length ~ in order to maintain the same spot size a. For example, a tenfold
decrease in 3P would require Ns = 200, which would in turn require F/3 optics.

Figures (10) and (11) show the time-average intensity and ablation pressure profiles for the com-
plete 1S1 case, in which AU is now chosen large enough to ensure mutually-incoherent beamlets.
Although the averaging interval r = 100 t,was chosen relatively short in this simulation, the quality
of the target profiles already shows dramatic improvement over previous results. The residual low
amplitude structure on the average intensity profile has been all but completely eliminated from the
ablation pressure (p(x) ),. The maximum (peak/valley) deviation from the ideal (ensemble-averaged)

pressure (p(x)) was found to be 2.4%, which is consistent with the RMS value aP = 0.66% calculated
in Sec. III. On the basis of Eq. (3.25a), we expect the maximum deviation to be <1 % with averag-
ing times r > 500tC.

Figures 12 and 13 simulate the partial 1S1 case, where the time delay sequence now repeats after
the loth step; thus steps 1 and 11, 2 and 12, etc remain coherent. The resulting increase in fine scale

interference structure (of wavelength Xf / 10D I =32 pm) is clearly evident in the average intensity, and
would persist throughout the entire pulse. As a result of thermal smoothing, however, this structure

is effectively removed from the ablation pressure; e.g., the corresponding contribution to expression

(3.28) is proportional to exp ( - 4rNd /a) = exp ( - 20). The 3.9 % peakhalley deviation found here

is somewhat larger than in the previous case, but that difference appears to be statistical.

VI. FWWIENTATION SIMULATIONS

The fdarnentation instability is an important consideration in the use of 1S1. Because the hydro-
dynamic response time for fdarnentation (typically - 100 ps) is much longer than the laser coherence
time (about 1 ps), it would appear that filamentation would be easily suppressed by 1S1. In addition,
random density fluctuations driven by the constantly changing intensity structure would act to diffuse
any residual intense spots, and spoil filamentation further.

On the other hand, the smoothing effect of 1S1 is incomplete on the filamentation-hydrody namic
time scales; time-averaged intensity fluctuations of - 10% persist over this period, and may still
drive filamentation. Also, therv will be short moments during which the local intensity incident on
target will be much higher than average. [For Gaussian statistics, the intensity distribution is
(1/(l))exp( -1/(1)) o] Because filamentation is inherently a nonlinear optical instability, one may argue
that these momentary intensity peaks, rather than the time averaged fluctuations, dominate the fila-
mentation behavior. Thus the effect of 1S1 on light filamentation is not readily discernible from sim-
ple arguments.

A numerical code SELFOCT has been developed to simulate thermal and ponderomotive self
focusing in laser-plasma interactions, and particularly any filamentation of the light inhomogeneities
that may occur under 1S1 conditions. The code is time dependent and Cartesian in two spatial dimen-
sions. Light propagation is handled by the parabolic wave equation, while the plasma dynamics are
calculated by semi-linearized fluid equations combined with flux-limited heat flow.

A. Code Description

Laser propagation
wave equation

in SELFOCT is described by the paraxial WKB approximation to Maxwell’s

(c2v2- a2/&2)E = (1 - ivei/u)u~E . (6. 1)

This equation assumes a quasi-neutral plasma characterized by the local plasma frequency
up = u[n, (x, z,t)/nc] 1‘2 and electron-ion collision frequency vei a (n, (x,z,t)/T~’2(x,z,t).31 One can
separate the field variations into fast and slow space-time scales by writing
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:
E(x, z,t) = k(x, z,r)exp [iJko(z’)dz’ -ial], (6.2)

o

where ‘V(X,z, t) is the slowly-varying complex amplitude, k. = <~/2(z)u/c, and <., = 1- n,O(z)/nC is
the real part of the dielectric constant determined by the. unperturbed steady-state density n,o (z ). In
the paraxial WKB approximation, V(-Z,z, t) and kO(z) remain slowly-varying over spatial scales

x- 27r/kO(z). Substituting (6.2) into (6.1) and retaining only the first order variations of V(X, z, t) in z
and t, one obtains

= -: (<r ‘60r+i6; )W. (6.3)

Here, e,(.r, z,t) = 1 -ne(.r, z,t)/nC and ~i(x, z,t) = V,,i(X, Z, f)~~(.r, Z? f)/nc@ are, respectively, the

real and imaginary parts of the instantaneous plasma dielectric constant, and v~(z ) = c e,~$(z) is the
group velocity. This equation can be simplified by applying the additional transformation

(6.4)

where <Oi(Z) = Vei(Z)neo(Z)/nc U, and rewriting all quantities in terms of the time ~ = r -z /v,Y(z ).
Redefining the axial coordinate as d~ = dz /6~$ (z) and normalizing both spatial coordinates to the opt-
ical wavelength h = 27rc/u, one finally arrives at the parabolic equation in canonical form

[ 1(47ria/dq + a%x~)+(x,z,; ) = –4+ 6(.V,Z,;) - co(z) +(. T, Z,F), (6.5)

where e = 6, + i ~i is the complex dielectric constant.

Equation (6.5) is solved using a split-step fast Fourier transform (FFT) technique.~’ To accom-
modate the FFT technique, the computational mesh must be periodic in x, and this affects the manner
in which the incident (z = O) 1S1 laser field is numerically constructed. The 1S1 echelons separate the
broadband laser beam into a multitude of mutually-incoherent beamlets, which are then overlapped at
the target by the focusing lens. In the SELFOCT code, these overlapping beamlets are approximated
by incoherent plane waves propagating at slightly different angles 0,, = x. /f, where x. is given by
expression (2.3) and 10. I <<1. The incident optical field is constructed on a calculational mesh in
Fourier k-space, with each plane wave assigned a transverse spatial frequency
km = ko(0) tan O. = ko(0)On, where ko(0) = IJ/C. Modes are exactly resolvable when Ik,,nIXlen is an
integer multiple of 27r, where Xl,. is the transverse width of the mesh; modes that lie between the
points on this k-space mesh are assigned to the nearest mesh point. Any modes outside of the resolv-
able frequency range (i.e., Ikxn IXl,n < T) are assigned to the k,. = O (DC) mode. The complex amplit-
ude of each beamlet is assumed to satisfy Gaussian statistics, as in Sec. V, with independent random
fluctuations from one coherence time to the next.

The plasma response to the laser field is found by solving linearized fluid equations that include
the ponderomotive force term. Combining the continuity and momentum equations for the fluid
plasma, linearizing in the flow velocity, and ignoring the second-order term V in (n, ) V c: one obtains
a driven ion-acoustic wave equation for the quantity L (x, z, t) = h (n,):.

(6.6)

(:.:
. . ,,.= .,
~t

r—
;,..,
,:#.i
<,#-,,
,.-.,,
,..,.,,
..... ,,
t-r-)

~:J
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where CY~ Ze2/4m, mi u;, c? = (ZTe + ~ )/mi, and via is a heuristic damping rate. Linearization is jus-
tified by the fact that the fractional density and electron temperature perturbations were found to be
typically < 10%, especially in the 1S1 runs where rapid fluctuations of the interference structure
tended to suppress large perturbations. In any case, most of the non-ISI simulations were carried out
using a steady-state treatment, which does not require linearization. [The use of the variable /n (n, )
instead of n,, preserves the correct ponderomotive nonlinear steady state behavior. ] The ion tempera-
ture is assumed to be constant; ion-electron energy equilibration times are typically on the order of
nanoseconds in these plasmas.

The ion-acoustic propagation and heat flow are expected to occur primarily in the transverse (x j
direction. This stems from the following two considerations: (i) under the paraxial wave conditions
assumed here the intensity variations occur primarily along x, and (ii) because the optical propagation
speed (- c) is so much larger than c,, the ion-acoustic “wake” will propagate nearly normal to the

optical axis z. Assuming then that all density disturbances propagate only along x, with relatively
small variations in the sound speed, one can Fourier-transform Eq. (6.6) to yield:

[

a2 a
—+qk’—

1

k ‘2
at t2 +k’2 ~(k’, ~,r’)= -—

at I [
f21v[*+c~*

c~~ 1
(6.7)

where t‘ = fey/h, k‘ = k, h and q = ~i~/k, c, is the ratio of the imaginary/real frequency of the ion-
acoustic wave. (In this paper g is taken to be 1/2). The first term on the RHS of (6.7) is due to the
ponderomotive force, and the second term is the plasma pressure due to thermal gradients. These
source terms are assumed to be approximately constant over the time step used in the code (typically
a picosecond or so). The solution to (6.7) for a source constant from to’ to to’+ t,’is:

I

L(k’, to’ +rl’) = exp (–gk’tl’/2)
{

l/K[af. (k’, f~;)/I%fj’ + ~ qk’~ (k’, to’) + ~qk ‘G] sin (Kf ,’)

[ 1
1

+ .L(k’, ro’)+G COS (Kt I’) -G (6.8)

where K = (1 –q2/4)1’2k’ and G = {al Y(k’, ro’ +rl’/2) IZ +c?(k’, to’ +tI’/’2)C/,3,3. This result is

inverse Fourier-transformed to yield the plasma density n, (x,z. ro’ + ri‘)at the next time step.

The electron temperature is found by solving the relevant energy balance equation,

3 aQ’>
~Te =-—

–” at2 ax
+H, (6.9)

where Q, is the electron thermal heat flux, H is the joule heating source given by H = Kb I ‘k 12, and

Kb (ne, Te) k the hWerSe bremrnstrahlung absorption coefficient. Compression effects and electron-ion

energy coupling are much smaller than the terms included in (6.9), and are ignored. A conservative
flux-limited formalism is used for the heat flux; i.e.,

(6. 10)

where ~, is the electron thermal conductivity of the plasma and f, is the flux limiter, which is set to
0.1 here in order to ensure that Q. does not exceed its classical limit. (For the simulations presented
here, the temperature gradients are smzdl enough that the heat flux remains well below the classical
limit; thus the magnitude of f, has little effect on the results.) Equation (6.9) is solved by a
predictor-corrector method with periodic boundary conditions. This can cause problems, because the
net energy deposited by inverse bremmstrahlung cannot be lost to the plasma by either transverse heat
flow losses or conversion to axial plasma kinetic energy. Therefore, the average energy gain

E(z, t) = ~dx H(x,z, t)l.bn is subtracted from the source term of (6.9) in order to keep the mean

temperature at a given axial distance constant.

22



For steady-state problems, the calculation of the plasma density is simplified. The momentum
r,,,-,.,

equation for constant sources IY Iz and T, reduces to v (c,%, ) + n, a v I‘1’12 = 0, yielding the solution ~,,
,:>,
,0-<,

c’

[ 1

c al*12/ax’ ~, ,
n(x, z) = , exp – a

C$-(x,Z) ! C3Z(X‘, z)

,...,,,

where C’ is a constant. The temperature ~, is found by

time steps, performed until the solution converges upon
and n, (x, z ) are iterated alternately to obtain a convergent

B. Results

iterative solution of Eq. (6.9) with arbitrary
itself. These separate solutions for T,,(x, z )
steady-state solution.

The results presented here compare the filamentation behavior exhibited by 1S1 irradiation, con-
ventional (quasi near field) focusing,’”x and the RPS technique. ‘Z.Z3For comparison purposes, we start

with a simple well-defined laser-plasma model. First, the plasma is chosen to be homogeneous: the

constant coupling parameters throughout the interaction region simplifies the anal ysis. Second, we
ignore absorption in the plasma; absorption competes with filamentation, and can mask or eradicate
the effect. While absorption is important in realistic conditions, it unnecessarily complicates the
interpretation and comparison of the results. Both of these constraints are discarded later when we
look at a “real plasma”.

The plasma model is composed of a homogeneous 250 ym thick CH slab at n,,O = 0.5n,. and
T,,O= 500eV, irradiated by a .25 ~m wavelength laser at 2 x 1014 W/cmz. Under these conditions,
perturbation theory’s predicts that both the thermal and ponderomotive self-focusing lengths (for the
fastest growing modes) are comparable (about 350h). Thus, the interplay between these two mechan-
isms should be well represented here. Note that this plasma model is selected primarily to produce a
very strong fdarnentation interaction; while useful for the purpose of comparison, it gives results that
are more pessimistic than those of actual laboratory plasmas, as we will see later.

Three different cases are investigated: 1S1 irradiance, RPS irradiance, and the standard quasi
near-field irradiance. Of these three, only the last is ambiguous in nature. We want the standard
irradiance case to represent a typical high-power laser. In practice, the structure of quasi near-field

illumination can vary greatly, depending upon the laser type, the power level, the optical engineering,
the attention paid to beam quality, etc. Here, we select a 3:1 peak-to-average as characterizing the
typical laser. The transverse mode spectrum of the incident plane waves is chosen to be tlat for all
spatial frequencies between r/R,pOt and Ns AK = k /2( F/number).

Two of these cases under scrutiny, the RPS and the standard laser case, require only the steady
state analysis because the intensity patterns remain stationary in time. First consider the standard
case, where the peak to average intensity value is 3:1 (the standard deviation is tif = .51). Figure 14
shows the intensity profile as a function of the propagation distance into the plasma. The first focal
point appears at z = 200X, and additional focal points appear with increasing frequency as the beam
propagates farther into the plasma. This focal distance is shorter than the predictions using either the
ponderomotive or thermal mechanisms alone; it is evidence that both mechanisms are acting together
to promote fdarnentation. The filaments that are created appear to attract one another, and converge
into a single large scale mode that has a high spatial frequency sub-structure. This behavior is caused
by the interaction of the thermal and ponderomotive forces; the ponderomotive force is primarily
responsible for the small initial filaments, since its fastest growing mode is approximately 40h in
width. Because thermal conduction spreads out temperature variations, the thermal filamentation
mechanism only acts over larger distances. The fastest growing resolvable thermal mode is the same
size as the simulation dimension, and this appears to be responsible for the large scale final mode.
Note that the transverse spatial frequency structure of the irradiance changes fundamentally as the fila-
ments are fortned; after the first few filaments form, the structure is spread out over a much larger
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region in frequency space. At first, these higher spatial frequency structures are locally coherent and
form coherent filaments. Once these filaments interact with one another, however, the intensity pat-
tern is randomized as the high frequency structure becomes incoherent on a much smaller scale. The
resulting interference pattern seen in the final large scale mode then closely resembles the initial

structure in the RPS method. Thus, once significant filamentation occurs and the modes interact
(because of thermal self-focusing), further filamentation should be suppressed in accordance with RPS
theory .ZZ

In the RPS calculations, there is a moderate amount of suppression of filamentation if one uses
small F/number (<F /10) optics. Fig. 15 illustrates the reduction of filamentation that occurs as the
F/number decreases. As a measure of the degree of filamentation, the largest intensity occurring in
the plasma is used. [Typical maximum/average values of the intensity profile incident on the plasma
are as follows: (i) for the standard case (l~,X/luv): =0= 3; (ii) for RPS (/~UX/luv): =0 = 4 to 6; (iii) for

ISI (l~,/la,): GO = 4 to 5 and ((l)~m/(l)av ): =0 = 1.] For F/number s F/ 10, the maximum intensities

are, on average, about 25% or more larger than for F/number <F/10. There may be better suppres-
sion below f/2.5, but the parabolic wave approximation begins to break down there, and the simula-
tion results are not trustworthy. Also, the trend may be more pronounced at higher F/number than

shown here. The runs with larger F/number do not include the longer wavelength modes, which are
lumped into the DC term, and thus the peak initial intensities are somewhat lower than might other-
wise be expected.

The ISI simulation was run for 350 coherence times (t, =.97 psec), and most of the results
presented here were averaged over this entire interval. The most important result is the time aver-
aged intensity distribution shown in Fig. 16. This distribution exhibits the same development of high
spatial frequency structure found in the standard laser case, but without the development of the atten-
dant intensity peaks. The suppression of these peaks appears to be primarily due to the fact that the
1S1 irradiance structure constantly shifts around, not allowing any single filamentary structure to per-
sist in the same spot.

However, the suppression is not complete on the shorter time scales. A typical instantaneous
intensity distribution (Fig. 17) shows that filamentary structures are still present, although at a more
modest level than in the standard case. To compare, Fig. 18 plots the values of l,,Y.X//Ovs. propaga-
tion distance for the standard case, along with the maximum value of the time-averaged 1S1 intensity
((1)~, and the time average of the maximum 1S1 intensity ((1~,~), The 1S1 case is similar to the con-
trol case, except for two significant differences. First, the buildup of the intensity maximum takes
much longer with 1S1 (with the first intensity maximum occurring around z = 500x, as opposed to
z = 200h in the standard case), meaning that 1S1 has lengthened the self-focusing distance. Second,
the peak intensity with 1S1 is a factor of two lower than that found without 1S1. This may be due to
the smoothing effect in the time average, or it may be due to the smaller density channels made in the
1S1 process. (Note that although the averaged peak intensity in 1S1 is smaller than the standard case,
the initial averaged peak intensity is larger.)

While 1S1 effectively suppresses fdamentation of the time-averaged intensity, the behavior of the
instantaneous intensity distribution in the plasma is still cause for concern, as many plasma instabili-
ties have very short growth times (- ps), and can therefore react to the peaks seen here. For-
tunately, laser fusion pellets will not have densities - 0.5 n= or sub-kilovolt temperatures extending
over hundreds of laser wavelengths. As an example of a more realistic plasma, we present a simula-
tion taken from a short-wavelength pellet interaction used in an earlier study. 19 The target is a DT
pellet driven by a multi-megajoule laser, 26 nsec into the pulse, after a significant portion of plasma
volume has been created. The temperature and density profiles used for this example are plotted in
Fig. 19. To a good approximation the radial convergence can be ignored, and the target treated as
pknar. The major differences between this and the previous model are the inclusion of absorption
(approximately 50% of the light is absorbed before n = .5nc), higher temperatures, and the large
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volume of plasma that is very underdense (and therefore more weakly coupled to the light). The
results, as plotted in Fig. 20, show that 1S1 suppresses filamentation even on the short time scales,
and negates filamentation as a problem. On the other hand, the results with the standard irradiation
condition (2.25: 1 peak to average) indicate that filamentation will be a nuisance without 1S1 (Fig. 21);
here, a filament with a maximum intensity 9 times the incident average intensity has been formed.

VII. SUMMARY AND DISCUSSION

This paper has described the 1S1 technique in detail, and explored its potential application to
direct-drive laser fusion. We have derived the ideal 1S1 profiles in the complete overlap and quadra-
ture configurations [Eqs. (2. 17) and (2.23), respectively], and examined the perturbing factors, such
as multibeam interference, laser aberration, and plasma tilamentation, which can introduce nonunifor-
mities or limit the controllability of those profiles.

Using both analytic theory and numerical simulations, we have shown that ablation pressure

nonuniformities due to the rapidly fluctuating interference structure are smoothed by two independent
mechanisms. Thermal diffusion suppresses the higher spatial frequency components, in accordance
with the “cloudy day” model. [E.g. see Eqs. (3.7) or (3.2 la,b). ] If this mechanism acted alone (as
it would in the case of narrow bandwidth light) the standard deviation i7Pwould be approximate y pro-

portional to (Md) ~ /D ) [Expression (3 .25b)], which favors a large conduction zone width d and
small overall F/number f/D. Temporal averaging provides an additional smoothing factor

“2 [Eq (3.19)], which favors a wide laser bandwidth AU = 1/rC and a long pulse. Theal - (tC/T) .
standard deviation UP = 6Pof resulting from the combination of these two mechanisms is given
approximately by expressions (3 .25a, b); this result shows that ablation pressure nonuniformities -
1% should be attainable under laser-plasma conditions of interest to ICF. In the partial 1S1 scheme,
there is a stationary component in the interference structure due to the coherent repeating steps.
Although this component cannot be smoothed by temporal averaging, its spatial frequencies are suffi-
ciently high that they are almost completely eliminated from the ablation pressure by the thermal
“smoothing mechanism. Thus, partial 1S1 may be one way to avoid the excessive pulse lengthening
effects that would otherwise occur in large aperture systems where the number N: of independent
beamlets could exceed tP”lJAt. If necessary, one could avoid the coherence between repeating steps
by segmenting or multiplexing the laser beam itself, driving each segment by either separate oscilla-
tors or a different switched-out portion of a long single oscillator pulse.

The theory has shown that with 1S1 the average intensity profile at the target remains relatively
insensitive to laser beam aberrations whose scale lengths Sab are larger than the initial bearnlet width
D,. In practice, this means that an incident beam aberrated to N,,~ times its diffraction limit would

require Ns > 3N.b echelon steps to ensure adequate control over the target profile. The aberration
will tend to misalign and broaden this profile somewhat [Eqs. (4. 10) or (4. 12)], but it will not intro-
duce any small-scale structure. In the usual case where Nti > s 1 and the aberration arises primarily
from random phase structure on the beam, the relative intensity perturbations due to misalignment and
broadening are R, - l/Ns [Eq. (4.18)} and Rz - N$~/N~ [Eq. (4.20)], respectively. Most of the
broadening effect is controllable because it depends only upon spatial averages of the phase structure
over the entire laser aperture; the uncontrollable component is ARz - Nti /N~ [Eq. (4.22)]. Laser
intensity nonuniformities can also contribute to perturbations of the 1S1 profile, especially in the qua-
drature configuration; however this effect also depends upon a spatial average over the aperture, and
is expected to be negligible if Ns >>1. Our results show that it should be possible to control the 1S1
intensity perturbations to within - 1%, even with the degree of aberration expected in realistic fusion
drivers.

.....<
r,,

Two dimensional simulations of optical propagation using the SELFOCT code have shown that
1S1 significantly reduces filamentation in the’ underdense plasma, even in a non-absorbing, high den-
sity (0,5 nC), low temperature (500 eV) slab, where a normal laser beam would experience intense
fdamentation. For low F/number optics, the filamentation also appears to be inhibited by the
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random-phase shift technique,22’z3
including inverse bremsstrahlung,

but to a lesser degree than with 1S1. In simulations at 0.25 pm,
higher temperatures, and a more realistic plasma profile, the fila-

mentatio-n is virtually eliminated with 1S1. (Fig. 20)

An important concern for 1S1 is the question of how broad bandwidths or transient nonuniformi-
ties would affect certain laser-plasma instabilities (e.g. parametric instabilities), which can respond
much faster than the hydrodynamics. Earlier experiments at 1.054 pm indicated that although broad

laser bandwidth suppressed stimulated Brillouin scattering in the underdense plasma, as predicted
theoretically, the bandwidth appeared to enhance a critical region instability that produces fast elec-
trons 39’~ In the NRL experiments at 1 micron, ao this effect was observed both with and without the

1S1 echelons. The bandwidths used in these experiments were comparable to the expected ion-
acoustic frequency for the parametric decay instability, and the associated temporal mode beating may
have been seeding this critical region instability. More recently, 20 the experiments were repeated at

0.527 km to determine whether the use of a shorter laser wavelength, which is strongly absorbed
before it reaches the critical region, would inhibit the fast electron generation. This indeed occurred;
in fact, the experiments showed that with the combination of 1S1 and shorter wavelength, the
enhanced hot electron generation observed earlier was replaced by a virtual quenching of hot electron
production. In summary, the NRL experiments are consistent with the following model: (1) The

smooth irradiance profile obtained with 1S1 echelons and broad bandwidth suppresses the effects of
hot spots, preventing for example the seeding of self focusing. (2) The combination of this smoothing
with the stabilizing effect of the bandwidth itself suppresses underdense parametric instabilities. (3)
The shorter laser wavelength prevents light from reaching the critical region, and thereby suppresses
broadband enhancement of hot electrons.

In the 1S1 and other related schemes discussed so far, the beam is divided up by optical arrays
placed at the output of the laser, where coating damage and optical comp1exityi8”3b may be possible
issues. This restriction on the location of the 1S1 arrays stems from self focusing effects in glass
l~ers, and from the necessity of maintaining spatial coherence in any harmonic conversion crystals.
Near-field nonuniformities associated with an array of beamlets would seed self focusing if one
attempted to amplify those beamlets in a multistage glass laser.41 In KrF lasers, this restriction is no
longer necessary because the amplifying medium is gaseous, intensities are low (typically < 10
MW/cm2), and harmonic conversion is not required. The spatial incoherence could then be induced by
echelonsJ2 or some alternative technique at a low energy stage within the laser, and optically-relayed
through the remaining stages of the amplifier chain. For example, one could use reflection from a
so-called plasma “spatial filter” to generate the spatially-incoherent light .43 Although this technique is
capable of producing a smooth focal spot, ‘3.U it is not clear whether there would be sufficient control

over the spatial coherence properties, or sufficiently rapid temporal averaging of the interference
structure to ensure that the target profile is controllable. Alternatively, one could use the scheme
shown in Fig. 22, in which a beam of statistically-homogeneous incoherent light is generated by
broadband amplified spontaneous emission (ASE) in a mirrorless or spatially multimode oscillator.21
This beam traverses a variable-density absorber, whose spatial transmission function F(x) is the
desired target beam profile. It is then focused onto the entrance pupil of an optically-relayed KrF
laser chain. Because the entrance pupil lies at the Fourier transform plane of the absorber, the optical
information needed to reproduce F(x) at the target will be transported through the laser by a multitude
of small coherence zones, rather than any large whole beam structure; thus the coherence zones play
essentially the same role as the bearnlets do in the conventional 1S1. The target beam profile will be
insensitive to laser imperfections as long as the coherence zones remain small in comparison to the
transverse scale lengths of the phase aberration or amplifier gain nonuniformities. It will be insensi-
tive to amplifier saturation if the coherence time t= remains short in comparison to the KrF relaxation
time (s Ins). Theoretical analysis, along with a preliminary experimental test using a small KrF
oscillator-amplifier setup, has demonstrated that this technique is indeed capable of producing a
smooth, controllable focal profile, even under non-optimum conditions. 21 Additional results on a
larger KrF system will be reported in later publications.
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APPENDIX

This Appendix calculates the moments of the target profile that the laser would produce without
the 1S1 echelons. The coherent (but aberrated) amplitude in this plane is given by the diffraction

integra130

&(x,. z,t) = *Tvk_z)jd2.r’E~(x’?f)‘Xp

[ 1

P;;-+ +’ .
-z)

(Al)

Substituting expression (2. 1) for .&(x’, r ), one obtains the intensity

(ZC(x, Z)) = (c/87r)( I ~C(X, Z,t)12)

CA2(IF 12) 2

{[ H

= ,2T)2w_z,2 jdx~d2xA(x)A*(x)exp -A (X-X)X-+(1X12- [X),’) , (A2)

where Cc = b2c /87r. From Eq. (2.5) and the definition bz = 8iT/cD ~, one obtains

Jk(x,z))d’x =( IF12)J% IA(X’)1 =(1~1’) (A3)

The centroid of (l=(x, z)) is defined by Eq. (4.7)

(k], = J {k(x,z)) Xdwj(k(x,zw%

= [=J2 [i~f$-)(’x’’’-’ x’””l ‘A4a)

Jd2.r’Jd2x’’A(x’) A*(xJ’) exp

x[=lv’Jexp [-*(X’-X’’XIX2’2’

(A4b)

Performing the integration over x, which gives 6(x’ - x”), then integrating by parts over x’, one

finally obtains

which reduces to (4.6a) for z < <f. The second spatial moment is defined by

r

1 k=
2ir(f -z)D,

r

(A5)

[xc xc], = j(zc(x,z))xxd2x/ J(IC(X,Z)M2X (A6a)

2

[

Jd2x’Jd2x’’A(x’) A*(x”) exp ‘k (1X12- Ix’’ l’)
2f(f -z)

1

[1

x f-z 2V,L V,, ex “
1 !P[

f:z(x
-—

k 1
‘ ‘X’’)” X d2x (A6b)

,-,,,
,....,,

Following steps similar to those used on (A4), one obtains expression (4.6b) for z < < f.
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Figure 4 — Relative RMS mode amplitudes of the intensity nonuniformities [Eq. (3.22)] x (number of
echelon steps Ns ) vs. reduced mode number Im I/Ns, assuming no temporal averaging.

34



c’:
~,.

(-.
,.,”,

;.. $,

e,?:,
<N,,

}-, !

,.,..

b..

r-m
r;

30

25

20

G
15

&
2f3

10

5

Oi
4

!$\\\
I\ ‘, I

\

*
\
\
\.

9 ‘s
*

*

. .

I

*

*

* m

* ■

*
*

*
m

I I I I I I I
6 8 10 12 14 16 18 20

AKdNS

Figure 5 — Standard deviation of the ablation pressure nonuniformities [Eq. (3.24)] vs. dimensionless parameter
AKdN~ = (2rd /a )N~ (assuming no temporal averaging) for values of the fixed parameter AKd << 1 (solid
line), AKd = 0.5 (squares), and AKd = 1.0 (stars). The dashed line is the asymptotic result
5 - 2‘‘2/M@/s [Expression (3.25b)], which becomes exact in the limit where AKd <<1 and AKdNs >>1.P

35



1.

0.5

0

-0.5

.. \
, \

/ \
/—1’ \

\
/ ,,’

\\\/ 4 \

# \
, ,

# \
/ \

, \
,

/
,

\

I

/

/

/

\
\
\
\

\ $

\

\
\
\
\

\
\
\
\

\ \

/ /
/

,
/ ,

,

/
,

/

\ ./ ,

r
/ /’., ,,’

\ /
‘. --..’

\/

-1 I I I
-1 -0.5 0 0.5

xja

Figure 6 — Ideal sinc2 profile S (m /a, O) [defined by Eq. (2.17)] and its first and second derivatives [defined
by Eqs. (4.1 l)], which are used to calculate perturbations of the time-averaged 1S1profile due to laser beam
aberration. The solid line shows S(rx /a ,0), dotted line shows S ‘.,(mr /a ,0), and dashed line shows
S “U (rx /a ,0).

36



1

0.8

0.2

0
<’.

I I I
-1 -0.5 0 0.5 1

x/a

Figure 7 – Time-averaged 1S1profiles calculated from expressions (4. 10) and (4. 11), assuming {xc]: = O and
1S1broadening factor a /2{ Ixc 12);’2 equal to m (solid line), 5 (dashed line), and 3 (dotted line).



QUASI NEAR FIELD FOCUSING OF AN
ABERRATED LASER BEAM

INCIDENT
BEAM

5 x D.L. ~sER BEAM 1/ /
=-..~
LENS (F = 1 m)

FLUENCE AT THE ABSORPTION REGION ABLATION PRESSURE, ASSUMING
THERMAL SMOOTHING WITH d = 50pm.

Figure 8 — Numerical simulation of (he conventional focusing geometry, where the target is placed in the quasi

near field of the 5 X DL aberrated laser beam. The ablation pressure retains large nonuniformities in spite of
the thermal smoothing.



RANDOM PHASE BEAMLETS WITH
NARROW BANDWIDTH LIGHT

INCIDENT
BEAM

ki-

N~=20

LENS (F = 6 m)

FOCAL POINT FLUENCE, ASSUMING ABLATION PRESSURE, ASSUMING

THAT THE ECHELONS ARE ILLUMINATED THERMAL SMOOTHING WITH d = 50 ~m.

BY A MONOCHROMATIC LASER.
INTERFERENCE PATTERN IS “FROZEN IN.”

Figure 9 — Numerical simulation of the quadrature configuration (using reflecting echelons with N~ =20 and
D, = 1 cm) illuminated by narrowband 527 nm light. The resulting stationary interference pattern is partially
filtered out of the ablation pressure, but the lower spatial frequencies remain, giving a 37% pealdvalley
deviation from the ensemble-averaged profile (p (x )).
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1.S.1. WITH BROADBAND LIGHT
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ECHELONS IN PLACE, AND A BROADBAND
LASER INTEGRATED OVER TIME INTERVAL
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ABLATION PRESSURE, ASSUMING
THERMAL SMOOTHING WITH d = !50ym.

Figure 10 — Numerical simulation of 1S1 with broadband 527 nm light, showing the quadrature intensity and
ablation pressure profiles averaged over 100 coherence times. The pealdvalley deviation from the ensemble-
averaged ablation pressure is now 2.4!%.
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Figure 11 — Horizontal and vertical slices through the center of the ablation pressure profile shown in Fig. 10.
The dashed lines show the ensemble-averaged profiles (p (x ,0)) and (p (O,y )).
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Figure 13 — Horizontal and vertical slices through the center of the ablation pressure profile shown in Fig. 12.
The dashed lines show the ensemble-averaged profiles (p (x ,0)) and (p (O,y )).

43



1000

800

600

200

I I I I I
80 160 240 320 400

x/A

35
30
25
20
15
10
5
0

I

z/A

o 80 160 240 320 400

x/A

Figure 14– Contour and isometricp lot of the intensity foratypical laser proiile (3:1 peak-to-average intensify
variations, Ur,,l$=0.51) incident on a slab of .5n,.ri, CH plasma at 500eV. Contours are at 2.21,,.,

which is10% of thepeak laser intensity. Laser propagates along thez axis.
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Figure 15 – Comparison of maximum intensity achieved inside plasma as a
f number, for a variety of input intensity profiles.
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Figure 16-Time averaged ISIlaser intensity distribution incident onaslabof.5~~C,i, CH
plasma at 500eV. Average istaken over 350 coherence times.
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Figure 18 — Comparison of peak values of 1S1and standard laser irradiation vs propagation distance in plasma.
The solid line is the “typical” laser (3:1 peak-to-average incident intensity variations), the dotted line is the
time averaged 1S1 intensity peaks ((Im.J), and the dashed line is the maximum of the time averaged ISI
distribution ((I)mX).
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Figure 19 — Plasma electron density (solid line) and temperature (dotted line) profiles, taken from a simulation
of a DT pellet irradiated by a KrF laser at 3 x 1014W/cmz. These are the conditions for the results picmred
in figs. 20 and 21.
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Figure 20 — Intensity distributions in the phssma (Fig. 19) irrtidiated with 1S1 laser. (a) ‘he instantaneous

intensity after 500 coherence times shows no evidence of filamenttition. (b) The time averaged intensity (over
500 [C) shows very good smoothing by the 1S1 mechanism.
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INFORMATION NEEDED TO REPRODUCE F(r) IS
TRANSPORTED THROUGH THE ABERRATED LASER
BY A MULTITUDE OF SMALL COHERENCE ZONES
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Figure 22 — Schematic diagram of ii spatially incoherent
illumination of fusion targets. The fine ‘line profiles show

heavy lines show the time-averaged intensities (,IE 12).
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broadband laser system for smooth, controllable
typical instantaneous intensities I E 12, while the


